Deep Incomplete Multi-View Clustering via Mining Cluster Complementarity

نویسندگان

چکیده

Incomplete multi-view clustering (IMVC) is an important unsupervised approach to group the data containing missing in some views. Previous IMVC methods suffer from following issues: (1) inaccurate imputation or padding for negatively affects performance, (2) quality of features after fusion might be interfered by low-quality views, especially imputed To avoid these issues, this work presents imputation-free and fusion-free deep framework. First, proposed method builds a embedding feature learning model each view individually. Our then nonlinearly maps complete into high-dimensional space discover linear separability. Concretely, paper provides implementation mapping as well shows mechanism mine cluster complementarity. This complementary information transformed supervised with high confidence, aiming achieve consistency incomplete data. Furthermore, we design EM-like optimization strategy alternately promote clustering. Extensive experiments on real-world datasets demonstrate that our achieves superior performance over state-of-the-art methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective Multi-view Spectral Clustering via Pareto Optimization

Traditionally, spectral clustering is limited to a single objective: finding the normalized min-cut of a single graph. However, many real-world datasets, such as scientific data (fMRI scans of different individuals), social data (different types of connections between people), web data (multi-type data), are generated from multiple heterogeneous sources. How to optimally combine knowledge from ...

متن کامل

Multi-View Clustering for Mining Heterogeneous Social Network Data∗

Uncovering community structure is a core challenge in social network analysis. This is a significant challenge for large networks where there is a single type of relation in the network (e.g. friend or knows). In practice there may be other types of relation, for instance demographic or geographic information, that also reveal network structure. Uncovering structure in such multi-relational net...

متن کامل

Partial Multi-View Clustering

Real data are often with multiple modalities or coming from multiple channels, while multi-view clustering provides a natural formulation for generating clusters from such data. Previous studies assumed that each example appears in all views, or at least there is one view containing all examples. In real tasks, however, it is often the case that every view suffers from the missing of some data ...

متن کامل

Multi-View Clustering via Joint Nonnegative Matrix Factorization

Many real-world datasets are comprised of different representations or views which often provide information complementary to each other. To integrate information from multiple views in the unsupervised setting, multiview clustering algorithms have been developed to cluster multiple views simultaneously to derive a solution which uncovers the common latent structure shared by multiple views. In...

متن کامل

Multi-view Sparse Co-clustering via Proximal Alternating Linearized Minimization

When multiple views of data are available for a set of subjects, co-clustering aims to identify subject clusters that agree across the different views. We explore the problem of co-clustering when the underlying clusters exist in different subspaces of each view. We propose a proximal alternating linearized minimization algorithm that simultaneously decomposes multiple data matrices into sparse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2022

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v36i8.20856